Skip to main content

Microbes help hibernating animals recycle nutrients, maintain muscle through winter

Like many hibernators, thirteen-lined ground squirrels retain muscle tone and healthy gut microbiomes through hibernation even though they aren’t eating or moving around. Their success at rest may help humans make long space voyages. Photo by Rob Streiffer
Like many hibernators, thirteen-lined ground squirrels retain muscle tone and healthy gut microbiomes through hibernation even though they aren’t eating or moving around. Their success at rest may help humans make long space voyages. Photo by Rob Streiffer

To get through a long winter without food, hibernating animals — like the 13-lined ground squirrel — can slow their metabolism by as much as 99 percent, but they still need important nutrients like proteins to maintain muscles while they hibernate. A new study from the University of Wisconsin–Madison shows that hibernating ground squirrels get help from microbes in their guts.

The discovery could help people with muscle-wasting disorders and even astronauts on extended space voyages.

“The longer any animal doesn’t exercise, bones and muscles start to atrophy and lose mass and function,” says Hannah Carey, an emeritus professor in the UW–Madison School of Veterinary Medicine and co-author of the new study, published today (Jan. 27) in the journal Science. “Without any dietary protein coming in, hibernators need another way to get what their muscles need.”

One source of nitrogen, a vital building block for amino acids and proteins, accumulates in the bodies of all animals (including humans) as urea, a component of urine. The researchers knew that urea that moved into the squirrels’ digestive tract could be broken down by some gut microbes, which also need nitrogen for their own proteins. But the researchers wanted to see if some of that urea nitrogen freed up by the microbes was also being incorporated into the squirrels’ bodies.

They injected urea made with trackable isotopes of carbon and nitrogen into the blood of squirrels at three stages — during the active days of summer, early in winter hibernation and late in winter. Some of the squirrels had also been treated with antibiotics to kill off the majority of the microbes in their intestines. As predicted, isotope-containing nitrogen was released by some of the gut microbes that degraded the injected urea.

“We followed that nitrogen to (the) livers (of the squirrels), primarily — where it is used to make many proteins — and some to muscles,” says study co-investigator Fariba Assadi-Porter, an UW–Madison emeritus biochemist who specializes in tracking the isotopes. She is also a scientist in Integrative Biology and the university’s Nuclear Magnetic Resonance Facility. “We believe we’re seeing the isotope-labeled nitrogen molecules go from the host to the microbiome, then converted to usable molecules by the microbes before coming back to the host again, essentially being ‘recycled’ in the hibernating animal.”

The researchers observed two differences that support this microbial path. The squirrels whose gut microbes were largely depleted by antibiotics had far less of the trackable nitrogen in their liver and muscles. And when the researchers sequenced the genomes of microbes found in the squirrels’ guts, they found that as winter hibernation dragged on there was an increase in the presence of genes related to production of an enzyme called urease.

“Urease is not made by animals. Only microbes that express urease are able to split the urea molecule and release its nitrogen,” says Carey, whose work is supported by the National Science Foundation. “As long as the right microbes are present, it’s a transaction between them and the host — each get some of the nitrogen released to tide them over until hibernation ends.”

Describing the keys to survival over the duration of hibernation could help people on low-nitrogen diets or with disorders that cause muscles to atrophy. It could also make it possible for humans to make lengthy trips to distant planets.

Putting space travelers into a hibernation-like state means they wouldn’t need to take as much food, water and oxygen, and would produce less waste and carbon dioxide, saving vast amounts of weight and fuel.

“This process could theoretically reduce rates of muscle loss in space, where microgravity exposure invariably leads to muscle atrophy,” says Matthew Regan, a study co-author and former UW–Madison postdoctoral researcher who is now a professor of animal physiology at the University of Montreal. “And because characteristics of hibernation beyond this gut microbe-dependent process confer protection against other hazards of space flight such as ionizing radiation, it is theoretically possible that, if translated to humans, hibernation-like states could solve numerous challenges of human spaceflight simultaneously.”

This research was funded by grants from the National Science Foundation (IOS-1558044 and DGE-1747503), the National Institutes of Health (P41GM136463, P41GM103399, P41RR002301 and T32GM008349) and the Natural Sciences and Engineering Research Council of Canada.



from ScienceBlog.com https://ift.tt/kwphomJXb

Comments

Popular posts from this blog

Wiggling worms suggest link between vitamin B12 and Alzheimer’s

Worms don’t wiggle when they have Alzheimer’s disease. Yet something helped worms with the disease hold onto their wiggle in Professor Jessica Tanis’s lab at the University of Delaware. In solving the mystery, Tanis and her team have yielded new clues into the potential impact of diet on Alzheimer’s, the dreaded degenerative brain disease afflicting more than 6 million Americans. A few years ago, Tanis and her team began investigating factors affecting the onset and progression of Alzheimer’s disease. They were doing genetic research with  C. elegans , a tiny soil-dwelling worm that is the subject of numerous studies. Expression of amyloid beta, a toxic protein implicated in Alzheimer’s disease, paralyzes worms within 36 hours after they reach adulthood. While the worms in one petri dish in Tanis’s lab were rendered completely immobile, the worms of the same age in the adjacent petri dish still had their wiggle, documented as “body bends,” by the scientists. “It was an observa...

‘Massive-scale mobilization’ necessary for addressing climate change, scientists say

A year after a global coalition of more than 11,000 scientists declared a climate emergency, Oregon State University researchers who initiated the declaration released an update today that points to a handful of hopeful signs, but shares continued alarm regarding an overall lack of progress in addressing climate risks. “Young people in more than 3,500 locations around the world have organized to push for urgent action,” said Oregon State University’s William Ripple, who co-authored “The Climate Emergency: 2020 in Review,” published today in Scientific American. “And the Black Lives Matter movement has elevated social injustice and equality to the top of our consciousness. “Rapid progress in each of the climate action steps we outline is possible if framed from the outset in the context of climate justice – climate change is a deeply moral issue. We desperately need those who face the most severe climate risks to help shape the response.” One year ago, Ripple, distinguished profess...

Ancient Shell Sounds

Abandoned at the mouth of your shelter you quivered apprehensively at our approach, crying out to be held as we proclaimed the exception of your discovery. Sighing wearily as we consigned you to the dusty silence of our archives. But now When I hold you in my hands, I see the face of your purposefully speckled complexion. When I lift you to my ear, I hear the sound of an ancient sea lapping at your shores. When I place you at my lips, I feel the heartbeat of your creator pulsing to my breath. I close my eyes, as you call out to all that you have lost. The shell that was recovered from the Marsoulas cave in the Pyrenees of France (Image Credit: C. Fritz, Muséum d’Histoire naturelle de Toulouse). This poem is inspired by recent research , which has discovered that a large seashell that sat in a French museum for decades is actually a musical instrument used around 18,000 years ago. In 1931, researchers working in southern France unearthed a large seashell at the entr...