Skip to main content

Crispy gene editing in outer space

Crispy gene editing in outer space

Researchers have successfully demonstrated a new method to study how cells repair DNA damage in space. Sarah Stahl-Rommel, Genes in Space, and her colleagues will present the new technique in the PLOS One journal on June 30, 2021.

An organism’s DNA may be damaged by normal biological processes, or environmental causes such as ultraviolet light. Damaged DNA can cause cancer in humans and other animals. There are many natural ways cells can repair damaged DNA. Space radiation can cause DNA damage to astronauts who travel outside the Earth’s protective atmosphere. It may be crucial to know which DNA-repair strategies the body uses in space. Research suggests that microgravity conditions could influence this decision, raising concern that repair may not be sufficient. The issue has been largely ignored due to safety and technological obstacles.

Stahl-Rommel, along with colleagues, have created a new way to study DNA repair in yeast cells. This can be done entirely in space. This technique uses CRISPR/Cas9 genome editor technology to cause precise DNA damage. DNA repair mechanisms can then easily be observed in greater detail than with radiation or other causes. This method targets a particular type of DNA damage, known as a double strand break.

Researchers successfully tested the new method on yeast cells aboard the International Space Station. The technique is expected to allow for extensive space research on DNA repair. This is the first space-based CRISPR/Cas9 gene editing experiment. It also marks the first space-based successful transformation of live cells to incorporate genetic material from outside.

Future research may refine the method to mimic complex DNA damage caused ionizing radiation. This technique could be used as a basis for research into many other topics in molecular biology related to space exploration and long-term space exposure.

Sebastian Kraves, senior author, stated that it wasn’t just that the team was able to successfully deploy novel technologies such as CRISPR genome editing and PCR in extreme environments, but that they were also able to integrate them in a functionally complete workflow for biotechnology that can be used to study DNA repair and other fundamental cell processes in microgravity. These new developments give hope to humanity’s renewed desire to explore and live in the vast expanses of space.

Stahl Rommel, first author, says that Genes in Space-6 was a highlight in her career. She witnessed firsthand how much can be achieved when innovative students are supported and encouraged by NASA, industry, academia, and NASA, she said. Because of their expertise, the researchers were able to do complex science that is high-quality and beyond Earth’s borders. This collaboration is a great example for students and senior researchers, she believes.

Sarah Castro-Wallace, co-author, said that it was an honor to support Genes in Space-6. It is still amazing to me how sophisticated the science was when an organism was transformed and its genome edited using CRISPR/Cas9 in order to break down the DNA. Then, it was grown to allow for DNA repair. Finally, its DNA was sequenced in spaceflight onboard the ISS. This is a major step forward in space biology. This is a testament to both the Genes in Space Program and the outstanding students.



from ScienceBlog.com https://ift.tt/2SEtb15

Comments

Popular posts from this blog

Wiggling worms suggest link between vitamin B12 and Alzheimer’s

Worms don’t wiggle when they have Alzheimer’s disease. Yet something helped worms with the disease hold onto their wiggle in Professor Jessica Tanis’s lab at the University of Delaware. In solving the mystery, Tanis and her team have yielded new clues into the potential impact of diet on Alzheimer’s, the dreaded degenerative brain disease afflicting more than 6 million Americans. A few years ago, Tanis and her team began investigating factors affecting the onset and progression of Alzheimer’s disease. They were doing genetic research with  C. elegans , a tiny soil-dwelling worm that is the subject of numerous studies. Expression of amyloid beta, a toxic protein implicated in Alzheimer’s disease, paralyzes worms within 36 hours after they reach adulthood. While the worms in one petri dish in Tanis’s lab were rendered completely immobile, the worms of the same age in the adjacent petri dish still had their wiggle, documented as “body bends,” by the scientists. “It was an observa...

‘Massive-scale mobilization’ necessary for addressing climate change, scientists say

A year after a global coalition of more than 11,000 scientists declared a climate emergency, Oregon State University researchers who initiated the declaration released an update today that points to a handful of hopeful signs, but shares continued alarm regarding an overall lack of progress in addressing climate risks. “Young people in more than 3,500 locations around the world have organized to push for urgent action,” said Oregon State University’s William Ripple, who co-authored “The Climate Emergency: 2020 in Review,” published today in Scientific American. “And the Black Lives Matter movement has elevated social injustice and equality to the top of our consciousness. “Rapid progress in each of the climate action steps we outline is possible if framed from the outset in the context of climate justice – climate change is a deeply moral issue. We desperately need those who face the most severe climate risks to help shape the response.” One year ago, Ripple, distinguished profess...

Ancient Shell Sounds

Abandoned at the mouth of your shelter you quivered apprehensively at our approach, crying out to be held as we proclaimed the exception of your discovery. Sighing wearily as we consigned you to the dusty silence of our archives. But now When I hold you in my hands, I see the face of your purposefully speckled complexion. When I lift you to my ear, I hear the sound of an ancient sea lapping at your shores. When I place you at my lips, I feel the heartbeat of your creator pulsing to my breath. I close my eyes, as you call out to all that you have lost. The shell that was recovered from the Marsoulas cave in the Pyrenees of France (Image Credit: C. Fritz, Muséum d’Histoire naturelle de Toulouse). This poem is inspired by recent research , which has discovered that a large seashell that sat in a French museum for decades is actually a musical instrument used around 18,000 years ago. In 1931, researchers working in southern France unearthed a large seashell at the entr...