Skip to main content

Taking future wireless technology from science fiction to scientific reality

Taking future wireless technology from science fiction to scientific reality

Self-driving cars that “see” through obstacles and maneuver accordingly. A sensor that scans a liquid for calorie count and dangerous or poisonous content. A drone that detects exact amounts of soil moisture while hovering above crop fields. All of these futuristic-sounding devices are moving closer to reality, thanks to research being conducted by Mahanth Gowda, assistant professor of computer science and engineering at Penn State, with a three-year, $250,000 National Science Foundation grant.

Gowda is using wireless technology to develop IoTScope, a new system that will identify the material properties of any object by analyzing reflected and refracted radio-frequency (RF) signals similar to ones used for WiFi and cellular communications. To understand how the technology works, Gowda recommends thinking first of how a camera takes a photograph.

“When a camera takes an image, it’s measuring the light that is reflected from the surface of an object,” he said. “But with sensing with RF signals, even though there are a lot of ambient electro-magnetic RF signals in the environment, they are typically not strong enough to capture and sense like the way we measure light off an object for a photograph. So, what we do here is generate our own RF signals systematically to illuminate the environment and sense it.”

Two different methods generate these signals. The first is through a direct send, which occurs when the image of an object is taken through direct reflections. In this scenario, there are two antennas: one for transmitting and one for receiving. The transmitting antenna sends signals that illuminate the environment, and the receiving antenna captures the reflections from the environment. Properties of objects can then be measured by evaluating these reflections.

The second method involves passing a signal through an object to discern its properties.

“Imagine that you have a transmitter on one side of an opaque water bottle, and a receiver on the other side of it,” Gowda said. “Since the water bottle is not transparent, light and visible signals cannot penetrate it, but radio waves can penetrate most non-metallic objects. By measuring the properties of the signals, like how much loss you experience in the signal, how much delay you experience in the signal, you can tell whether this water is, for example, contaminated.”

Although Gowda has published preliminary results on the second method, it is still an active area of exploration and a key part of the novelty of his work. He explained that this method could improve the capabilities of self-driving cars.

“Self-driving cars commonly use computer vision and sensors like LiDAR (light detection and ranging),” he said. “But the computer vision and sensors do not work well under adverse weather conditions — poor visibility, a lot of snow — or in low-light conditions. So, in those situations if we can use radar-based sensing like WiFi kind of signals, and sense reflections from humans and objects and other cars, we should be able to direct them. If you combine vision with signals from radar, you can improve the robustness and reliability of autonomous driving operations.”

Gowda said he will use simulations, real-world experiments, data analysis modeling and machine learning approaches as he improves the IoTScope system. He hopes the next steps will be commercialization.

“There’s a wide range of industries that might be interested in this kind of technology,” he said. “Most of the things we are working on very much have a real impact in life with respect to self-driving cars, airports and other types of security and health care applications.”



from ScienceBlog.com https://ift.tt/3kn3rj7

Comments

Popular posts from this blog

Wiggling worms suggest link between vitamin B12 and Alzheimer’s

Worms don’t wiggle when they have Alzheimer’s disease. Yet something helped worms with the disease hold onto their wiggle in Professor Jessica Tanis’s lab at the University of Delaware. In solving the mystery, Tanis and her team have yielded new clues into the potential impact of diet on Alzheimer’s, the dreaded degenerative brain disease afflicting more than 6 million Americans. A few years ago, Tanis and her team began investigating factors affecting the onset and progression of Alzheimer’s disease. They were doing genetic research with  C. elegans , a tiny soil-dwelling worm that is the subject of numerous studies. Expression of amyloid beta, a toxic protein implicated in Alzheimer’s disease, paralyzes worms within 36 hours after they reach adulthood. While the worms in one petri dish in Tanis’s lab were rendered completely immobile, the worms of the same age in the adjacent petri dish still had their wiggle, documented as “body bends,” by the scientists. “It was an observa...

‘Massive-scale mobilization’ necessary for addressing climate change, scientists say

A year after a global coalition of more than 11,000 scientists declared a climate emergency, Oregon State University researchers who initiated the declaration released an update today that points to a handful of hopeful signs, but shares continued alarm regarding an overall lack of progress in addressing climate risks. “Young people in more than 3,500 locations around the world have organized to push for urgent action,” said Oregon State University’s William Ripple, who co-authored “The Climate Emergency: 2020 in Review,” published today in Scientific American. “And the Black Lives Matter movement has elevated social injustice and equality to the top of our consciousness. “Rapid progress in each of the climate action steps we outline is possible if framed from the outset in the context of climate justice – climate change is a deeply moral issue. We desperately need those who face the most severe climate risks to help shape the response.” One year ago, Ripple, distinguished profess...

Ancient Shell Sounds

Abandoned at the mouth of your shelter you quivered apprehensively at our approach, crying out to be held as we proclaimed the exception of your discovery. Sighing wearily as we consigned you to the dusty silence of our archives. But now When I hold you in my hands, I see the face of your purposefully speckled complexion. When I lift you to my ear, I hear the sound of an ancient sea lapping at your shores. When I place you at my lips, I feel the heartbeat of your creator pulsing to my breath. I close my eyes, as you call out to all that you have lost. The shell that was recovered from the Marsoulas cave in the Pyrenees of France (Image Credit: C. Fritz, Muséum d’Histoire naturelle de Toulouse). This poem is inspired by recent research , which has discovered that a large seashell that sat in a French museum for decades is actually a musical instrument used around 18,000 years ago. In 1931, researchers working in southern France unearthed a large seashell at the entr...